天天干亚洲_99久久免费国_亚洲国产精品成人久久久软件_亚洲成av人**亚洲成av**_精品中文字幕在线AⅤ_男女真实毛片视频图片

English | 中文版 | 手機版 企業登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > 用無人機多光譜圖像估算水稻葉片氮濃度的背景效應研究

用無人機多光譜圖像估算水稻葉片氮濃度的背景效應研究

瀏覽次數:1309 發布日期:2022-5-10  來源:本站 僅供參考,謝絕轉載,否則責任自負

熱點

背景效應影響無人機圖像估算葉片氮濃度(LNC)。

背景去除削弱了水稻LNC估計中對觀測時間的敏感性。

來自陽光像素的AACIre(AACIre sunlit)優于來自所有像素的AACIre。

AACIre sunlit在綠色像素方面的精度高于SAVI和CIre。 


摘要

背景效應是利用無人機(UAV)多光譜圖像監測作物葉片氮濃度(LNC)的一個關鍵限制。為了提高LNC的估計,已經開發了一些背景去除方法,但在研究中沒有對它們的性能進行比較,也不清楚它們是否對無人機圖像的觀測時間敏感。本研究評估了三種背景去除方法,即土壤調整植被指數法(SAVI)、綠色像素植被指數法(GPVI)和豐度調整植被指數法(AAVI),用于從基于無人機的多光譜圖像中估算水稻在各個生長階段和一天中不同觀測時間的LNC。選擇紅邊葉綠素指數(CIre)作為后兩種方法的共同基礎。特別是,AAVI方法經過了改進,增加了端部構件的數量,實現了端部構件的自動提取,并進一步評估了將光照部位與樹冠陰影部位分離的效果。
 

我們的研究結果表明,非正午觀測時間的植被指數(VIs)與LNC的關系在個體和整個生長階段都優于正午觀測時間的植被指數(VIs)。與SAVI和CIre green相比,AACIre for all pixels(AACIre all)對觀察時間的靈敏度最弱,并且在單階段(接合:r2=0.70,啟動:r2=0.76,標題:r2=0.70)和跨階段(r2=0.66)模型中產生了最佳關系。在三類像素衍生的AAVIs中,AACIre sunlit(R2=0.90,RMSE=0.17%,Bias=0.03%)在LNC估計精度方面顯著優于AACIre all(R2=0.85,RMSE=0.23%,Bias=0.08%)和AACIre shaded(R2=0.38,RMSE=0.49%,Bias=0.40%)。這項研究表明,改進的AAVI方法在減少背景效應、更準確地監測生長參數方面具有重大價值,并可推廣到其他作物和地區,以改進精確的作物管理和基于田間的高通量表型分析。
 

An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times 


Highlights

Background effect impacted leaf N concentration (LNC) estimation with UAV imagery.

Background removal weaked sensitivity to observation time in rice LNC estimation.

AACIre from sunlit pixels (AACIre-sunlit) outperformed AACIre from all pixels.

AACIre-sunlit yielded higher accuracies than SAVI and the CIre from green pixels.


Abstract

Background effect is a crucial limitation for the monitoring of leaf nitrogen concentration (LNC) in crops with unmanned aerial vehicle (UAV) multispectral imagery. Some background removal approaches have been developed for improve the estimation of LNC, but their performances are not compared in one study and it is unclear whether they are sensitive to the observation time of UAV imagery. This study evaluated three background removal approaches, i.e., the soil-adjusted vegetation index (SAVI) approach, the green pixel vegetation index approach (GPVI) and abundance adjusted vegetation index (AAVI), for estimating rice LNC from UAV-based multispectral imagery at individual and across growth stages as well as different observation times of the day. The red edge chlorophyll index (CIre) was chosen as the common basis for the last two approaches. In particular, the AAVI approach was refined with a higher number of endmembers and automated endmember extraction, and further evaluated for assessing the effect of separating sunlit components from shaded components of the canopy.
 

Our results demonstrated that the vegetation indices (VIs) for off-noon observation times showed better relationships with LNC than those for noon at individual and across growth stages. Compared to both SAVI and CIre-green, the AACIre for all pixels (AACIre-all) exhibited the weakest sensitivity to observation time and yielded the best relationships for single-stage (jointing: r2=0.70, booting: r2=0.76, heading: r2=0.70) and across-stage (r2=0.66) models. Among the AAVIs derived from three categories of pixels, the AACIre-sunlit (R2 =0.90, RMSE=0.17%, Bias=0.03%) outperformed AACIre-all (R2 =0.85, RMSE=0.23%, Bias=0.08%) and then AACIre-shaded (R2 =0.38, RMSE=0.49%, Bias=0.40%) remarkably for the estimation accuracy of LNC. This study suggests that the refined AAVI approach has great value in reducing the background effect for more accurate monitoring of growth parameters and could be extended to other crops and regions for improved precision crop management and field-based high-throughput phenotyping.
 

發布者:北京博普特科技有限公司
聯系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 午夜福利在线观看老司机 | 天天做夜夜做狠狠做 | 亚洲视频国产一区 | 日本一区二三区 | 日韩精品一区二区三区在线视频 | 中文字幕一精品亚洲无线一区 | 国产美女网站导航在线 | 日韩在线中文字幕视频 | 一区二区 久久 | 一级黄色片网址 | 国产三级午夜理伦三级最新章节 | 91精品日韩| 久久首页 | 成年人免费在线视频 | 伊人久久精品无码二区麻豆 | 免费在线视频一区二区 | 国产高清美女一级a毛片 | 日本伊人色综合网 | 国产毛片毛片毛片毛片 | 亚洲色精品VR一区二区 | 国产视频一区二区在线播放 | 国产精品久久久久77777丨 | 亚洲精品无码成久久不卡 | 99久久免费看精品国产一区 | 亚洲性夜夜时 | 色就色综合偷拍区第三十七页 | h在线播放 | 久久免费视频一区二区 | 丰满人妻无码AⅤ一区二区 久久中文免费 | 亚洲Av日韩Aⅴ高潮潮喷无码 | 99视频这里只有精品视频 | 久久精品视频99 | 日本少妇精品亚洲第一区 | 久久不见久久见中文字幕免费 | 免费一级A级高清毛片 | 国产偷国产偷亚洲清高网站 | 一本一本久久aa综合精品 | 在线色网站 | 亚洲欧美综合一区二区三区黄大片 | 欧美成人一区二区三区片免费 | 国产精品久久国产 |