天天干亚洲_99久久免费国_亚洲国产精品成人久久久软件_亚洲成av人**亚洲成av**_精品中文字幕在线AⅤ_男女真实毛片视频图片

English | 中文版 | 手機版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術(shù)文章 > 基于機器學習和多光譜成像分類的茄子種子分類方法研究

基于機器學習和多光譜成像分類的茄子種子分類方法研究

瀏覽次數(shù):1627 發(fā)布日期:2022-4-19  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責任自負

基于機器學習和多光譜成像分類的茄子種子分類方法研究
 

摘要:在這項研究中,選擇了十五種不同品種的茄子種子進行多光譜成像技術(shù)的判別分析。從多光譜圖像中獲取的 78個特征從單個茄子種子中提取,然后使用SVM和一維卷積神經(jīng)網(wǎng)絡(luò) (1D-CNN) 進行分類,總體準確率分別為90.12%和94.80%。還采用了二維卷積神經(jīng)網(wǎng)絡(luò)(2D-CNN)對種子品種進行判別,準確率達到了90.67%。這項研究不僅證明了結(jié)合機器學習技術(shù)的多光譜成像可以作為一種高通量、無損的工具來區(qū)分種子品種,而且還揭示了種子殼的形狀可能與母本不完全相同,因為遺傳和環(huán)境因素。
 

圖像采集設(shè)備VideometerLab 4 (VM)如圖1(a)所示。VM 配備了 19 個 LED。每個LED發(fā)出具有指定中心波長的光。儀器采集19個波段的多光譜圖像,空間分辨率為2192×2192。每個像素代表從紫外到近紅外(365~970 nm)的光譜反射率。由于種子和藍色背景之間的顏色對比,種子可以很容易地從圖像中分割出來。圖像處理程序使用 VideometerLab 軟件完成。MATLAB用于開發(fā)分類模型。茄子十五種品種在 2017 年收獲用于該實驗。所有種子均由河北農(nóng)業(yè)大學省重點實驗室培育。將隨機數(shù)量的種子放入直徑為9厘米的培養(yǎng)皿中進行圖像采集(圖1(b))。種子總數(shù)為2872個,其中隨機選擇20%的種子作為測試集,10%作為驗證集,其余樣本作為訓練集。表1顯示了每個品種的種子數(shù)量。采用Otsu方法獲得二值圖像,并進行一系列形態(tài)學操作以去除背景中的噪聲。分水嶺算法用于圖像分割。圖 1(c)顯示了分割后的連接種子圖像的邊界,圖1(d) 顯示了分割后的單個種子。
 

圖1.圖像采集和圖像分割。(a) VideometerLab4用于圖像采集。(b) 茄子種子的多光譜圖像(查看模式:sRGB)。(c) 分水嶺算法分割的種子邊界圖像。(d)單個種子的圖像。


圖3顯示了15個茄子品種的平均光譜反射率。不同品種的平均光譜之間僅存在微小差異。15個品種的光譜曲線趨勢相似,在515~540nm范圍內(nèi)呈下降趨勢。17-38的光譜反射率在15個品種中最高;其他品種在同一范圍內(nèi)。大多數(shù)品種的光譜曲線相互交叉或重疊。
 

圖3.十五種茄子種子的平均反射率


使用SVM和1D-CNN 開發(fā)了基于提取特征的判別模型。RBF、poly 和線性核函數(shù)用于SVM。具有線性核函數(shù)的SVM算法的最佳精度為91.28%。表現(xiàn)最好的模型是CNN,分類準確率為94.80%。圖 2(a)–4(d) 顯示了訓練損失、訓練準確度、測試損失和測試準確度。損失隨著迭代而急劇下降,而分類精度迅速提高,這表明快速收斂。
 

圖2.1D-CNN 的曲線:(a)訓練損失;(b)訓練準確性;(c)測試損失;(d)測試精度


我們還使用2DCNN開發(fā)了判別模型,分類準確率為87.6%。圖3(a)-6(d) 顯示了訓練損失、訓練準確度、測試損失和測試準確度;趨勢與1D-CNN一致。
 

圖3.2D-CNN 的曲線:(a)訓練損失;(b) 訓練準確性;(c) 測試損失;(d) 測試精度


相關(guān)閱讀

Videometer種子表型組學:種子活力研究-熒光成像

植物病害表型組學:多光譜病害指紋圖譜

Videometer種子表型組學:多光譜成像作為菠菜種子健康檢測的潛在工具

Videometer種子表型組學:多光譜圖像分析在種子種質(zhì)庫管理中的應(yīng)用

Videometer種子表型組學:利用可見光、近紅外多光譜和化學計量學對不同番茄種子品種的分類

Videometer種子表型組學:使用多光譜成像和化學計量學方法在線鑒別水稻種子

Videometer種子表型組學:使用多光譜成像預(yù)測蓖麻種子的活力

Videometer種子表型組學:甜菜種子加工損傷的多光譜圖像分類

種子表型組學:基于多光譜成像的葵花籽品質(zhì)特征識別

種子表型組學:利用多光譜成像和化學計量學方法對大豆種子進行無損鑒別

種子表型組學:Videometer多光譜成像種子質(zhì)量評估的新工具

種子表型組學:聚合物包衣對水稻種子萌發(fā)的影響

種子表型組學:基于可見-近紅外多光譜圖像數(shù)據(jù)的偏最小二乘判別分析檢測菠菜種子的發(fā)芽能力和胚芽長度

種子表型組學:使用灰度共生矩陣和機器學習技術(shù)識別單倍體玉米種子

種子表型組學:不同成熟度甜菜種子發(fā)芽抑制因子去除的優(yōu)化

種子表型組學:通過射線照相和多光譜圖像分析測定小麥種子中的侵染

種子表型組學:用于表征麻瘋樹種子質(zhì)量的多光譜和X射線圖像

種子表型組學:鹽脅迫下九個高羊茅品種的種子萌發(fā)和幼苗生長參數(shù)

種子表型組學:多光譜成像結(jié)合機器學習判別辣椒種子品種

種子表型組學:葉綠素熒光作為花生種子品質(zhì)評價的新標志物

種子表型組學:基于多光譜和共振成像技術(shù)的麻瘋樹種子健康分析新方法

種子表型組學:多光譜成像結(jié)合多變量分析的單株紫花苜蓿種子品種鑒別

發(fā)布者:北京博普特科技有限公司
聯(lián)系電話:010-82794912
E-mail:1206080536@qq.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2025 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com
主站蜘蛛池模板: 精品国偷自产在线视频 | 一二三四日本视频中文 | 看黄色一级视频 | 国产亚洲美女精品久久久 | 一区精| 成x99人av在线www | 欧美黑人激情性久久 | 久久最新精品视频 | 国产第一页视频在线播放 | 一本一道久久综合久久 | 国产精品久久久成人一区二区三区 | 国产精品动漫一区二区三区 | 免费成人av | 成人h精品动漫一区二区 | 久久亚洲国产精品一区二区 | 精品乱子伦一区日本午夜 | 国产精品影院在线观看 | 三级片网站人人网视频在线 | 一级黄片毛片免费看 | 国产精品18久久久久久白浆动漫 | 国产免费无遮挡吃奶视频 | 久久人人妻人人做人人爱 | 亚洲人成黄69影院 | 在线免费观看一级毛片 | 操你啦青青草 | 亚洲国产欧美在线人成 | 国产精品毛片久久久久久 | 一级免费高清无码 | 一色桃子视频 | 亚洲第一看片 | 在线免费观看毛片视频 | www.夜夜撸 | AV草草久久久久久久久久久 | 久久久久久久久久免费视频 | 国产四区 | 久久不卡一区 | 国产毛片久久久久久美女视频 | 亚洲国产一区二区三区精品 | 国产乱对白刺激视频户外 | 久久久久爽人综合网站 | av色区|